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The recent development of networks is producing an unprecedented wealth of information. There

is an increasing interest in analyzing such data both from telecoms and other stakeholders points of
view. In this survey, we outline some examples of data that can be collected from telecommunica-

tion networks as well as their strengths and weaknesses. We introduce techniques for dealing with

anonymity, limitations in granularity, and pre-processing of such data to infer patterns related to
human activities in the city. Each of these techniques will be described in terms of assumptions

and limitations with state of the art examples that use real telecommunication dataset. Finally,

we provide an overview of the challenges currently being faced in this field.
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1. INTRODUCTION

Over the past decade the development of networks has produced an unprecedented
wealth of information reflecting various aspect of urban life. These digital traces
are valuable sources of data in capturing the pulse of the city in an astonishing
degree of temporal and spatial detail, and could be used to make urban systems
more efficient.

Telecom operators gather massive amount of data about how their users interact
or occupy the city’s infrastructure. In fact the International Telecommunication
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Union (ITU, 2011) estimates that at the end of 2011 there were 6 billion mobile
subscriptions, with a global penetration of 87%, and 79% in the developing world.
Every mobile phone leaves digital traces while interacting with the his infrastruc-
ture. Each phone can be seen as a mobile sensor that allows to define the geographic
position of the subscriber holder almost in real time. Telecom operators are aware
of the potential of such data and they have recently started to experiment with
new business models in which they would generate revenues not only from their
final customers (mobile phone users) but also from upstream customers such as
traffic analysis, social networking, and advertising companies. As a result, they are
sharing aggregate mobile data with various research communities (Review, 2010).
Recently, massive datasets about cellphone users have been exploited in a variety
of urban-related applications, including understanding mobility patterns (González
et al., 2008; Isaacman et al., 2010), the use of urban spaces (Reades et al., 2007),
travel demand during special events (Calabrese et al., 2010), social network struc-
ture (Onnela et al., 2007) and geographical dispersal of mobile communications
(Lambiotte et al., 2008).

In this survey, we describe the types of data that can be collected from telecommu-
nication networks and consider their strengths and weaknesses in terms of accuracy,
level of details and applications. In particular, Section 2 shows what telecoms data
can tell about urban dynamics. Section 3 outlines a brief overview of the mech-
anisms at the basis of mobile phone data generation and introduces what can be
done with each type of data. Using running examples based on telecommunication
datasets, Section 4 both presents some filtering and processing techniques necessary
to deal with this data. Finally, Section 5 provides an overview of the challenges
currently being faced in this field and Section 6 concludes.

2. MOBILE PHONE NETWORK DATA FOR URBAN ANALYSIS

It is well known that 50% of the globe’s population lives in urban areas, that cover
only the 0.4% of the Earth’s surface (Fund, 2007). 70% are projected to do so
by 2050. From one side, such urbanization opens great opportunities for improv-
ing people lifestyles, from the other side there is the need to prevent a potential
economic, health and environmental disaster (Manyika et al., 2011). Pervasive tech-
nologies datasets are a way to understand how people use the city’s infrastructure
from the point of view of mobility (transportation mode), consumption (energy,
water, waste) and environmental impact (noise, pollution). In fact, this kind of in-
formation offers new insights about the city (see for example the Villevivante project
1), which are of great interest both from an economic and political perspective. In
particular, urban planning can benefit from the analysis of personal location data.
Decisions that can be improved by analyzing such data include the mitigation of
traffic congestion and planning for high-density development. Urban transit and
development planners will increasingly have access to a large amount of informa-
tion about peak and off-peak traffic hotspots, volumes and patterns of transit use
with which they can potentially cut congestion and the emission of pollutants. By
drilling down into this wealth of data, urban planners will be more informed when
they make decisions on anything from the placing and sequencing of traffic lights

1http : //villevivante.ch
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to the likely need for parking spaces. Singapore’s public transportation 2 is already
using ten-year demand forecasts partly based on personal location data to plan
transit needs. Thus, understanding the urban dynamics allows both to improve
services and create feedback loops with citizens to reduce energy consumption and
environmental impact. Figure 1 shows how pervasive technologies datasets fit in
this scenario. The human behavior of people in a city reflects how citizens use
the built environment, the natural environment and the services offered by a city.
Pervasive technologies are able to capture human behaviors and produce related
datasets that contain very useful information for planning and management.

Human behavior

Built 

environment

Natural 

environment
Services

Planning and 

Management

Pervasive technologies 

datasets

Fig. 1. Schema reflecting the role of pervasive technologies data sets in an urban
scenario.

An important aspect not yet covered in this section is privacy concerns. Every
country has its own regulations that telecommunication operators have to comply
with. The main worry arising from the use of mobile phone network data is the
fact that phone users’ movements are continuously monitored, particularly in cases
where such personal location data are made available to applications whose ben-
eficiaries are third parties. As an example, the European Directive 2002/58/EC
3 regulates the treatment of personal data and protection of intimacy in the elec-
tronic communications sector. Article 14 of this Directive includes a description of
location data, stating that: “Location data may refer [...] to the identification of
the cell in the network in which the mobile terminal is located at a given moment

2www.onemotoring.com.sg/publish/onemotoring/en/on the roads/traffic management.html
3Directive 2002/58/EC of the European Parliament and of the Council of 12 July

2002 concerning the processing of personal data and the protection of privacy in the
electronic communications sector (Directive on privacy and electronic communica-
tions), http : //eur−lex.europa.eu/LexUriServ/LexUriServ.do?uri = CELEX : 32002L0058 :

en : HTML
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or to the time at which the localization information has been registered.” Article
9 of this Directive also supplies regulations covering location data, as follows: “In
the event that location data can be processed [...] such data may only be processed
if they are made anonymous, or with the prior consent of the users or clients, to
the extent and for the time necessary to provide a value-added service.” Thus, in
order to be compliant with regulations, all the data used for the research in this
field (see the list of references) has been released by telecom operators so that it is
impossible to associate the location data with actual cell-phone users.

In the field of urban analysis, mobile phone network data has been used in several
topics:

(1) Estimating population distribution. With this regard, the use of mobile
phone network data is twofold: (i) estimate where people live and (ii) estimate
how population density changes over time, i.e. identify regions densely popu-
lated during particular days of the week and hours of the day. In particular,
from one side the focus is on identifying locations meaningful to users. Authors
n (Ahas et al., 2010; Isaacman et al., 2011) introduce a model for determining
the geographical location of home and work places, while the paper in (Nurmi
and Bhattacharya, 2008) describes and evaluates a non-parametric Bayesian
approach for identifying places from sparse GPS traces (given the generic ap-
proach of the methodology, it can be easily applied to mobile phone network
data). From the other side, the focus is on analyzing how the density of peo-
ple changes over time. For example, in (Sohn et al., 2006; Sevtsuk and Ratti,
2010; de Jonge et al., 2012) authors explore how coarse-grained GSM data from
mobile phones can be used to recognize high-level properties of user mobility
and daily step count. The work in (Krisp, 2010) shows how calculating and
visualizing mobile phone density assist fire and rescue services. Moreover, in
(Soto et al., 2011) the information derived from the aggregated use of cell phone
records is used to identify the socioeconomic levels of a population.

(2) Estimating types of activities in different parts in the city. During the
week, the call activity of a residential region, a commercial or a business is dif-
ferent. It may be possible to derive a classification from the call activity profile
of a region, thus allowing to classify regions as “residential”, “commercial” or
“business”. For example, the work in (Girardin et al., 2009) provides a case
study where aggregate and anonymous cell phone network activity data and
georeferenced photos from Flickr allow to track the evolution of the attractive-
ness of different areas of interest in New York. Other works try to focus on
the specific land use of a city. For example, in (Soto and Frias-Martinez, 2011)
authors use Voronoi tessellation to automatically identify land uses from call
detail record databases. The work is focused on the following types: industrial
parks and office areas, commercial and business areas, nightlife areas, leisure
and transport hubs, residential areas. In (Cáceres et al., 2012) authors analyze
when and where people use greenspaces and how such behavior differes from
urban areas. In (Reades et al., 2007) authors monitor the dynamics of Rome
and obtain clusters of geographical areas measuring cell phone towers activity.

(3) Estimating commuting patterns and mobility. Using the cell phone ids,
timestamp and location data of an event (call, sms, internet usage) it is possible
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to estimate commuters mobility in predefined regions. For example, the work
in (González et al., 2008) shows how the widespread coverage of mobile phone
wireless networks in urban areas makes possible to track both groups and in-
dividuals. Authors in (Calabrese et al., 2011) use the real-time data collected
from mobile phones to monitor the vehicular traffic status and the movements
of pedestrians in Rome, Italy. Using an algorithm to analyze opportunistically
collected mobile phone location data, the authors of (Calabrese et al., 2011) es-
timate weekday and weekend travel patterns of a large metropolitan area with
high accuracy.

(4) Analyzing social events and social networks. The increase availability
of mobile phone usage data sets in recent years has led to a number of studies
also related to social events and the geography of social networks. In particular,
(Ferrari et al., 2012; Traag et al., 2011) try to detect the underway of a social
events from passive mobile phone networks data while the work in (Calabrese
et al., 2010) analyse the movements of people during special events. More-
over, the geography of social networks has been exploited from a statistical
perspective (Lambiotte et al., 2008), to derive a geography of mobile commu-
nications based on the relative frequency of communications as well as their
average duration (Blondel et al., 2010), to study social radius of influence at
both communication and mobility scale (Calabrese et al., 2011,?).

Moreover, mobile phone network data has been used not only in research works
but also in running products based on both aggregated and raw data. A first group
of applications deal with the issue of using mobile phone network data to derive
urban traffic. Traditional companies (such as Inrix, www.inrix.com and Delcan,
http : //delcantechnologies.com) use traffic collection methods based on locating
GPS-enabled vehicles and mobile devices. The use of mobile phone network data in
order to leverage traffic information, enables to handle more data nodes (given the
huge number of mobile phones subscribers), and therefore higher resolution than
traditional traffic collection methods that are based on a relative small group of
GPS-enabled vehicles. Thus, an increasing number of mobile phones operators are
making partnerships with external companies 4 that can provide real-time services
using traffic information. For example, Cellint (www.cellint.com) provides a world-
wide service using mobile signaling data to locate the cars on the road. Such data
is then analyzed to provide immediate incident detection (such as road sensors), as
well as travel time and local speed over short segments (e.g. 200 meters in urban ar-
eas and 500 meters in other areas) for all the roads within a covered area. Intellimec
is a similar company (www.intellimec.com) that provides real-time traffic and in-
cidents information in the Canada area. Another company that leverage mobile
phone network data to provide traffic information is Airsage (www.airsage.com),
who aggregates signaling data from cellular networks to provide real-time speed
and travel times for major roads. The company currently provides real-time loca-
tion and traffic data in almost every city in the USA. Airsage also tries to provide
unprecedented insight into the behavior of consumers at specific locations and at

4see for example the partnership between Vodafone and TomTom, http :

//enterprise.vodafone.com/discover global enterprise/case studies/tomtom.jsp
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different times during the day. This data can be used to understand locations,
behaviors, and movements that are vital information for advertisers, corporations,
commercial carriers, departments of transportation, and urban planners and, more
in general, for any group that needs real-time geo-targeted information to plan,
build and grow. Other applications focus on using mobile phone network data to
provide services based on a more “social” aspect. For example Sense Networks 5 is
commercializing Macrosense, a machine-learning technology model that aggregates
historical and real-time mobile phone location data to, for instance, identify the
best street corners from which to hail a taxi. Sense Networks’ first application
for consumers was CitySense, a tool designed to answer the question “Where is
everyone going right now?”. CitySense shows the overall activity level of the city,
hotspots and places with unexpectedly high activity, all in real time. The tool
uses also Yelp and Google to show what venues are operating at those locations.
CabSense, another Sense Network application realised in early 2010, offers users an
aggregated map generated by analyzing tens of millions of data points that rank
street corners by the number of taxicabs picking up passengers every hour or every
day of the week. From a complementary perspective, other research works try to
combine mobile phone network data and social networks. For example, Mr.Typ
(Mobile and Real-Time Yellow Pages 6) and Social Telescope 7 offer a prototype of
a platform for the flexible use of several forms of mobility data (GSM, mobile social
networks data and wifi localizations). These websites provide a search engine for
places where the rank is based on the average number of people that visit the area.
Such a ranking takes advantage of telecoms data and of other data from different
social networks (in the first prototype) or only on social networks (in the second
prototype). For a more detailed description of Social Telescope see (Shankar et al.,
2012). In this context, mobile phone network data has the following potentials: (i)
offer the possibility to study micro and macro behaviors; and (ii) truly reflects hu-
man behavior given the fact that data is becoming more and more available thanks
to the increasing adoption of mobile technologies.

The big issue shared by all these works is to compare the obtained results with
other data sets in order to validate them.

To this regard, comparative data sets are useful to:

(1) Validate findings extracted from analysis of the mobile phone network data;

(2) Define scaling factors to extend results to the overall population;

(3) Augment information about urban space, which is useful to extract higher level
patterns.

Table 2 outlines the main comparative data sets useful to validate the results
obtained from mobile phone network data and highlights their pros and cons.

5www.sensenetworks.com
6www.mrtyp.it
7www.socialtelescope.com
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Type Pros Cons
Census and Surveys Very refined spatial reso-

lution
Often outdated

Land use Different categories Different spatial units
Points of interest Very refined categories Different sources of data

may provide different cat-
egories for the same points
of interest

In particular:
Census and Surveys Data. Census and surveys data provide dataset related

to very different areas: demography, health, education, government and security,
communication and transport, etc. (see for example the 2010 US Census 8). Such
data set can be used to: (i) validate home and working areas; (ii) validate city
patterns such as hotspots, commuting, traffic flows, etc.; (iii) validate land use.
The main advantage of this kind of data is the very refined spatial resolution which
is often the census block. The main disadvantages are that they are updated usually
only every 5/10 years. Moreover, only some questions are asked thus providing only
a partial view of human behavior.

Land Use. Global land use data sets (e.g., http : //data.giss.nasa.gov/landuse/)
offer access to a number of datasets that characterize an area based on its planned
use. Different categories have been defined such as country codes, population den-
sity, cultivation intensity, etc. The main disadvantages are the possibly different
spatial units in which they are aggregated.

Points of Interests. Points of interests are a list of businesses and important
places to visit in a city. Usually every point of interest is characterized by a category
and a location. There are many possible different sources: Yellow Pages, Yelp,
Google Places etc. which might provide different information. As an example,
the “A60”, a famous rooftop bar in Manhattan can be categorized as “Bar” by
one source and as “Nightlife” by another source. In most comparisons, categories
are aggregated in super-categories (e.g., bar and restaurants are aggregated in the
super-category “Food”).

There are some challenges and limitations in comparing different datasets. The
main one is that different collection periods and different spatial units introduce
difficulties in comparing datasets. For example, census data is aggregated at block,
track or country level while mobile phone network data is aggregated at cell tower
level.

3. MOBILE PHONE NETWORK DATA GENERATION

When a mobile phone is switched on, always notifies its position in terms of the
actual cell where it is currently located. The notification of the mobile phone
position can be triggered by events (call, sms, or internet usage) or by updates of
the network (for a more detailed description of the technologies and standards used
to derive the position of mobile phones see (Wang et al., 2008)).

8http : //2010.census.gov
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Event-Driven Mobile Phone Network Data Today, there are two primary
sources of these data: communication and internet usage. Most telephone networks
generate Call Detail Record (CDR) that are data record produced by a telephone
exchange documenting the details of a phone call or sms passed through the device.
A CDR is composed of data fields that describe the telecommunication transaction
such as the user id of the subscriber originating the transaction, the user id receiving
the transaction, the transaction duration (for calls), the transaction type (voice or
sms), etc. Each telecommunication operator decides which information is emitted
and how it is formatted. As an example, there could be the timestamp of the end
of the call instead of the duration. Figure 2(a) shows an example of a CDR log:
in this case the telecommunication operator decides to emit the user id (as a hash
string), the International Mobile Subscriber Identity (IMSI, an identification code
used to individually represent cell phones on the GSM and UMTS networks), the
id of the cell where the user is connected and the timestamp of the log.

user hash IMSI cell id timestamp
6fb175825f09bf 22201 662188114 1330944127195
6cd347681a76fd 22201 662188114 1340718433219
6fb175825f09bf 22201 564389331 1330944127195

(a)

cell id lat lon
662188114 44.658885 10.925102
564389331 44.701606 10.628872

(b)

Fig. 2. (a) Example of a CRD log: anonymized user id, International Mobile
Subscriber Identity (IMSI), cell id and timestamp in millisecond from epoch; (b)
Cell location information.

The second source of data is internet usage. In telecommunications, an IP Detail
Record (IPDR) provides information about Internet Protocol (IP)-based service
usage and other activities. The content of the IPDR is determined by the service
provider, the Network/Service Element vendor, or any other community of users
with authority for specifying the particulars of IP-based services in a given context.
Examples of IPDR data fields are: user id, type of the website, time of event,
number of bytes transmitted, etc. It is important to note that the margin of error
in this case varies widely according to whether the device to which the IP address is
attached is mobile, and to the density and topology of the underlying IP network.

Both communication and internet usage can be associated to the cell phone towers
used during the interaction.

Network-Driven Mobile Phone Network Data A cellular network is a radio
network of individual cells, known as base stations. Each base station covers a
small geographical area which is part of a uniquely identified location area. By
integrating the coverage of each of these base stations, a cellular network provides
a radio coverage over a much wider area. A group of base stations is named a

ACM Computing Surveys, Vol. V, No. N, January 2013.
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Location Area (LA), or a routing area. A LA is a set of base stations that are
grouped together to optimise signalling (see Figure 3(a)).

LA 2 LA 3

LA 1 BS

BSC

BSC

LA 1

LA 2

LA 4

LA 3

(a) Location Areas and Base stations (b) Periodic update

LA 1

LA 2

LA 4

LA 3

LA 1

LA 2

LA 4

LA 3

(c) Handover (d) Mobility Location Update

Fig. 3. (a) Location area and base stations; (b) Periodic update; (c) Handover; (d)
Mobility Location Update.

Typically, tens or even hundreds of base stations share a single Base Station Con-
troller (BSC). The BSC handles allocation of radio channels, receives measurements
from the mobile phones, controls handovers from base station to base station.

In such a context, three different types of location update can happen:

(1) Periodic Update, which is generated on a periodic base and provides infor-
mation on which cell tower the phone is connected to (see Figure 3 (b)).

(2) Handover, which is generated when a phone involved in a call moves between
two cell areas (see Figure 3 (c)).

(3) Mobility location update, which is generated when the phone moves between
two Location Areas (see Figure 3 (d)).

Another important aspect is how the user’s location can be detected. Location
information can be extracted as part of the interaction data between the mobile
phone and the telecommunication infrastructure. In most cases it is represented by
the cell tower position or the cell sector to which the mobile phone is connected.
Figure 2(a) shows an example of a CDR location information, represented by the cell
id field. Figure 2(b) maps each cell id in the corresponding latitude and longitude
coordinates.

In particular, triangulated location can be estimated having access to data col-
lected at lower levels in the network. The format of such data is given by standard
documentation provided by networks operators (as an example, see the 3gppp stan-
dard documentation, (3gp, 2012)). The principal techniques are the following:

(1) Timing Advance (TA), which is a value that corresponds to the length of
time a signal takes to reach the cell tower from a mobile phone. Since the

ACM Computing Surveys, Vol. V, No. N, January 2013.
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user hash longitude latitude uncertainty timestamp

4ba232e4d96f47dc94f7441e87c164fb 16 81 56 1246759931
4ba232e4d96f47dc94f7441e87c164fb 06 09 252 1246759922

4ba232e4d96f47dc94f7441e87c164fb 99 95 208 1246760034

Table I. Example of cell tower location information obtained using propagation models: compared
with Figure 2, such table shows an additional information represented by the uncertainty field.

users are at various distances from the cell tower and radio waves travel at the
finite speed of light, the precise arrival time can be used by the cell tower to
determine the distance to the mobile phone (see Figure 4(a)).

(2) Received Signal Strength (RSS),which is a measurement of the power
present in the signal received by cell towers from one another. Because the
power levels at the start of the signal transmission are well known and the
power drop in signal in open spaces is well defined, RSS can be used to esti-
mate the distance between a mobile phone and the surrounding cell towers (see
Figure 4(b)).

1.845 µs

1.845 µs

553.5 m

Total delay = 3.69 µs

-80,-90 dB

-80,-90 dB

-90,-100 dB

-90,-100 dB

-100,-110 dB

-100,-110 dB

-100,-110 dB

-90,-100 dB

-80,-90 dB

(a) (b)

Fig. 4. Estimating the mobile phone location information: (a) Time Advance and
(b) Received Signal Strength techniques.

It is important to note that with these methodologies the accuracy of the mobile
phone position is around 500m in urban areas. An accuracy of 150m in urban
areas can be obtained using propagation models and irradiation diagrams; such
techniques estimate the mobile phone position by finding the point that minimizes
the mean square error between measured and estimated mean power received by
all base stations. Table I shows an example of the cell tower location information
obtained using propagation models and irradiation diagrams; the main difference
is represented by the uncertainty field that gives an estimation of the accuracy of
the mobile phone position.

The kind of data explained in this section has been used to mine how people
move and behave in cities both from a spatial and temporal point of view (see
Section 2). In the next section we will show, from a general perspective, advantages,
disadvantages and potential applications of these kind of data.

3.1 Data Aggregation

Service providers in each country have different rules and restrictions as to what
kind of data can be exchanged through their network. Individual data is rarely

ACM Computing Surveys, Vol. V, No. N, January 2013.
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available in real time even for service providers, but is usually available the day
after if additional hardware is not installed on mobile phones. Moreover, the use
of individual data can lead to privacy concerns (as explained in Section 2). The
same data can be aggregated at different spatial and temporal scales. For example,
mobile phone network data can be aggregated at cell tower level by considering:
the number of calls, Erlang (total communication time), the number of sms, the
number of handovers, the number of location updates, etc.

Aggregated data can be more easily accessible in real time or with low delay.
Moreover, regarding the volume, aggregated data can be easily manageable, while
individual data might be difficult to manage. A possible solution to this regard
would be to analyze only a subset of users but this would rise the problem of
selecting a good and representative sample.

Table summarizes advantages, disadvantages as long as applications for each type
of mobile network data.

Advantages Disadvantages Applications

Aggregated Data

Aggregated cell
tower statistics

Easy to manage, possi-
bly in real time

No information on
users’ mobility

Land use estimation,
population density es-

timation

Aggregated CDR

with cell tower lo-
cation information

Easy to manage No individual interac-

tion information

Connection between

places, Regional parti-
tioning

Individual Data

Individual CDR Individual communica-
tion patterns

Large dataset, mostly
not real time

Social network analysis

Individual CDR

with cell tower lo-

cation information

Individual communica-

tion and mobility pat-

terns

Large dataset, mostly

not real time

Mobility analysis be-

tween large areas

Individual Event-
driven triangulated

location

Individual mobility
patterns, possibly in

real time

Large dataset, possibly
need for special hard-

ware to access data

Origin destination,
transportation mode

Individual

Network-driven
data

Individual mobility

patterns, possibly in
real time

Large dataset, possibly

need for special hard-
ware to access data

Useful for mobility

analysis between large
areas

Table II. Advantages, disadvantages and possible applications for each type of mobile phone

network data.

In particular:

—Aggregated data at cell tower level. Such data can contain or not contain
the information regarding the cell tower location information. In particular,
(i) aggregated cell tower statistics that do not contain location information are
easy to manage and can be available in real-time. Such data can be used both
for the land use and the population density estimation; (ii) aggregated CDR
with cell tower location information have the disadvantage of not presenting the
information regarding the interaction between individuals.

—Individual data. Such data is provided for each individual and can contain
or not contain cell tower location information. The main disadvantage shared

ACM Computing Surveys, Vol. V, No. N, January 2013.
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by all this type of data is that they are represented by large datasets some-
times not in real-time. In addition, there is sometimes the need of additional
hardware to access the data. In particular, (i) individual CDR provides the
information regarding individual communication patterns that can be used for
social network analysis; (ii) individual CDR with cell tower location information
provides information regarding individual and mobility patterns. Such data can
be used to analyze the mobility between large areas; (iii) individual event-driven
triangulated location provides information regarding individual mobility patterns
possibly in real-time, but in order to access the data, there is possibly the need
for special hardware to access the data. It can be used for origin-destination and
transportation node analysis. (iv) individual network-driven data presents the
same features of the above type of data and can be used for mobility analysis
between large areas.

4. TECHNIQUES FOR MOBILE PHONE NETWORK DATA ANALYSIS

In this section we will show several techniques for mobile phone network data
analysis that have been used in research works (some of them are briefly introduced
in (de Jonge et al., 2012)). Each technique will be described in terms of assumptions
and limitations with a running example using real mobile phone network datasets.
First, we will describe some filtering techniques necessary to reduce rawness in the
data. Then, we will describe a list of features that can be extracted from mobile
phone network data as long as the necessary processing techniques.

4.1 Filtering Techniques

In order to mine mobile phone network data to derive human mobility patterns in
cities, several techniques are needed to reduce both the spatial uncertainty and the
noisiness of the raw data. The main issues to this regard are (i) assigning the user
to a specific location and (ii) identifying when the user stops in a location or is
simply passing through it.

—Assigning the user to a specific location. State of the art works in the area
suggest two main solutions:
(1) Assign the user to the centroid of the cell area. As shown in Section 3,

each CDR produced by a mobile phone is associated to a cell whose location
is known by the mobile phone operator. In (González et al., 2008) authors
first divide the area under investigation with a Voronoi tessellation technique
based on the cell tower locations, then they assign the user position to the
centroid of the corresponding Voronoi cell. A different approach is shown in
(Girardin et al., 2009), where the user location is assigned to the best serving
cell. The computation is made on simulated coverage and takes into account
both the cell sector and propagation models.

(2) Assign the user a probability to be in a given location. This second solution
introduces uncertainty in assigning a user to a location. For example the work
in (Traag et al., 2011) uses a propagation model to assign a user a probability
of being connected to a particular cell tower. The main advantage is that
this solution takes into consideration the fact that multiple towers might be
covering the same location.
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—Stop detection. Another important issue is determining which places are im-
portant to the user, i.e., in which places the user stops for a reasonable time
period. Given the rawness of mobile phone network data, the same event can e
registered as consecutive events associated to different close by locations. The
solutions proposed so far to improve accuracy in the raw mobile phone network
data can be divided in two groups:

(1) Solutions that leverage on consecutive location data, where consecu-
tive measurements which are close enough can be collapsed in a unique single
measurement. within a given spatial and temporal window are averaged all
together. For example, in (Calabrese et al., 2010) the authors fixed both
a spatial Sth and a temporal Tth threshold in order to detect stops, i.e.,
two consecutive stops stopi and stopj can be collapsed in the same stop if
distance(dstopi

, dstopi
) < Sth and (tstopi

− tstopj
) > Tth.

(2) Solutions that leverage on historical location data, where historical
location data is used to help understanding which places are important for
the user. For example, the work in (Isaacman et al., 2011) uses clustering
techniques (in particular the Hartigan’s algorithm) on a dataset spanned over
78 days with the aim of identifying which places are important to the users
such as home and work location.

4.2 Processing Techniques

In this section we will describe the kind of analysis that can be done on mobile phone
network data and the corresponding necessary processing techniques as shown in
the state of the art works. In particular, we have divided the analysis on the kind
of analysis that can be done on individual data and on aggregated data.

INDIVIDUAL DATA
Using individual mobile phone data, several features have been analyzed. In par-
ticular:

(1) Home and work location estimation. Using CDR with location informa-
tion, some works (Calabrese et al., 2011; Isaacman et al., 2011) have been fo-
cused on estimate the home and work location of the users. In order to increase
the precision in estimating the location, a dataset consisting of several days of
mobile phone network data for each user has been used. Necessary information
in the raw data are: (i) the number of times a cell tower was contacted by
the user; (ii) the length (in terms of time) of stay in a location. In particu-
lar, home location has been determined as the most frequented place during
evenings, while work location as the most frequented place during weekday
mornings/afternoons and excluding the home location and places with a high
number of evening events. Data has been validated using US census population
estimates at census track level.

(2) Daily mobility estimation. In (González et al., 2008), the authors tried to
infer daily trips using the distance between any two different visited locations.
In (Isaacman et al., 2011), the daily range of mobility related to where people
live has been analyzed. Moreover, origin and destination of trips can be mapped
(see for example (Calabrese et al., 2011)) thus allowing to count the number
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of trips for any time of the day and to analyze the attractiveness of an area
(measured as the number of different places people come from). In (Couronne
et al., 2011) users has been clustered on the basis of how often they move using
spatio-temporal analysis.

(3) Analyzing how social events impact mobility in the city. Using both
CDR with location information and individual event-driven triangulated loca-
tion data, some works (Calabrese et al., 2010; Traag et al., 2011) tried to model
and predict non-routine origin-destination flows (e.g., mobility flows generated
by the attendance to an event) in the city. The aim of these works is twofold:
(i) improve event planning and management (e.g., predict the effect of an event
on the urban transportation, adapt public transit -schedules and routes- to ac-
commodate additional demand, etc.); (ii) improving location based services, for
example recommending social events (see (Quercia et al., 2010)). In this last
work authors build a recommender system that analyzes users’ mobile phone
network data with the aim of suggesting events based on the users’ whereabouts
patterns. In particular, the authors analyzed also the “cold start problem”, i.e.,
the kind of events that can be suggested to a user that has no location history.

(4) Integrating social and mobility information. As shown in Section 2,
mobile phone network data has been mined also to integrate calling and location
pattern in order to help inferring face-to-face meetings. In (Calabrese et al.,
2011) authors discovered that people calling while connected to the same cell
tower (co-location) are a good proxy for face-to-face meetings. In particular,
they discovered that people tend to interact much more just before and after
this event, and the number of inferred face-to-face meetings decreases with the
users’ home distance. From the call interactions the authors are able to predict
when and where people will be meeting.

AGGREGATED DATA
As shown in Section 3 compared to individual data, aggregated data is much more
easy to manage and can be possibly available in real time. In the following we will
show the techniques that have been applied to mobile phone network data in the
state of the art works.

(1) Land use inference. Starting from aggregated cell tower statics, it is possi-
ble to understand activities in the city from telecommunication usage patterns.
This can augment existing built environment data collection and analysis meth-
ods (census, business registrations, etc.) at low cost and with very low latencies.
Categories of activities can be considered. In particular, classical time series
analysis can be performed (for example, the Principal Component Analysis
technique has been used in (Reades et al., 2007) or the Dynamic Time Warp-
ing technique in (Yuan and Raubal, 2012)) and clustering of time series can
classify places based on usage (like the Fuzzy C-Means technique proposed in
(Soto and Frias-Martinez, 2011)).

(2) Space partitioning. Using CDR with location information, it is possible to
partition the space based on the level of human interactions. In particular,
partitioning at different scale has been analyzed:
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—Regional Partitioning. Mobile phone users location at call time can be used
to infer origin and destination of the calls, thus allowing to model the effect
of geography on human mobility and interactions. Using network analysis,
in (Lambiotte et al., 2008) authors find that human interactions decrease
as distance increases following a gravity-like behavior. Exception emerges
are mainly due to: geographical features (e.g., rivers, see for example (Ratti
et al., 2010)), administrative borders and cultural differences.

—City scale partitioning. At the city scale, interaction events can be aggregated
to create a network of places where nodes are locations (e.g., cell towers) and
edges between nodes exists if interactions happens between people connected
to the two cell towers. The weighted graph can be partitioned in communities
using standard network analysis tools (modularity optimization). Researches
can detect: (i) which areas in the city are most connected; (ii) where interac-
tion borders exist (see (Blondel et al., 2010)); (iii) how borders change over
time (see (Walsh and Pozdnoukhov, 2011)).

—Country scale partitioning. In this case, CDR with location information have
been aggregated at a country scale. Users’ home country has been assigned
with the most frequent country where calls are made. Then, CDR have been
aggregated on the basis of users’ home country. Some interesting resulting
data shown in (Calabrese et al., 2011) are the interactions between countries,
in particular: state boundaries emerge in most of the cases, metropolitan
areas (e.g., NYC, LA) define new regions, some area merge as level of the
interaction is higher than expected. Starting from raw data, authors had
to take some actions: (i) normalization in order to deal with operator share
not being equal for every area and (ii) filtering of countries with a too low
number of customers or share (to preserve representativeness of the sample).

5. OPEN CHALLENGES

In this paper we have shown how mobile phone network data can be used to gain
insights on urban patterns. In dealing with this type of data, some challenges still
remain open:

(1) Limitations of event-driven data In order to analyze certain types of urban
patterns, it is important to have very frequent location data. As explained in
Section 2, event-driven data are generated only when the user takes some action,
i.e., sends an SMS, makes a call, etc. Thus, the location of the user might not
be updated very frequently. Some approaches proposed so far to solve this
problem are:

—Sampling only highly active users. This solution might be effective since high
communication (e.g., calling someone or sending an SMS) has been found to
be correlated to high mobility (Couronne et al., 2011). The main problem to
this regard is how to choose users that represents a good sample of citizens’
behavior.

—Sampling smartphone internet usage data. Given the high penetration of
smartphones (Manyika et al., 2011), another option is to use the internet
usage to derive location data. The main pros is that such kind of data
generally presents the lower inter-event time (Calabrese et al., 2010), but
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smartphone users’ behavior can not represent a general sample of citizen’s
behavior today.

—Network-driven data. Given the low frequency of users’ localization updates,
a better type of data could be network-driven data. In particular, periodic
sampling is independent on events but is not too good for short term mobil-
ity. Another alternative could be mobility-based sampling that is good for
analyzing mobility between large areas such as Location Areas.

(2) Limitations in spatial accuracy. It might be important to have very precise
location data for certain types of applications, such as to determine the accu-
rate location, the route undertaken by the user or the transportation modes.
As shown in Section 2, mobile phone network data does not provide accurate
localization. Some solutions proposed so far are:
—Look at history for recurring locations. This can help in smoothing irregu-

larities in the location data, allowing to assign a wrong (because of the low
accuracy in the localization) position to the nearest recurring location.

—Look at handover during calls. Handoff patterns are relatively stable across
different routes, speeds, directions, phone models, and weather conditions
(Becker et al., 2011), thus allowing to derive the trajectories of mobile devices
using also CDR data with a low frequency of localization update.

(3) Managing uncertainties. Looking at the previous open challenges, it is clear
that the uncertainties in the user’s status in time and space can be relatively
large. This is due to both the low frequency of user’s localization update and
the spatial resolution of mobile phone network data. Thus, it is important to
provide reliable and uncertain-aware results. One proposed solution in estimat-
ing uncertainties in users’ position. For example, in (Couronne et al., 2011) the
authors try to estimate the bias of user behavior in mobile phone data taking
into account the imprecision of data, with a trigonometric approach to describe
both mobility values and uncertainty: theta and norm.

(4) Finding comparative datasets. Traditional city data (e.g., census and sur-
veys) are collected using different methods, sampling time and collection years.
This makes difficult to compare results obtained analyzing mobile phone net-
work data with these traditional datasets. Proposed alternatives are:
—Self-reported data. Self-reported data can make an additional value to tra-

ditional data since they might be accurate, not outdated and with a correct
sampling time to make comparisons. An example of self-reported data is the
one that can be obtained from Flickr (www.flickr.com), that is used for
example in (Girardin et al., 2008) to mine tourists patterns in Rome.

—Social networking data. Similar to the previous one, social networking data
provides specific information regarding the places visited by the users. There
are a plethora of location-based social networks such as Foursquare (https:
//foursquare.com), Twitter (https://twitter.com), Facebook Places (www.
facebook.com/about/location), etc. that provides public access to their
own data. The works in (Bawa-Cavia, 2011; Ferrari et al., 2011) provide
examples of using such data for urban analysis.

(5) Dealing with privacy and anonymity. Using individual mobile phone net-
work data, even if anonymized, it is possible to detect important information
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from users (e.g., home and work location). Authors in (Zang and Bolot, 2011)
show that in the cases where more than one top location can be identified,
anonymity is not preserved. Two proposed solutions (Krumm, 2009) so far are:

—location obfuscation, which consists in non reversible ways to slightly alter
the location such that it does not reflect the real location of the user, but still
contains enough information to provide a satisfactory service. See (Wight-
man et al., 2011) for more information regarding the evaluation of several
location obfuscation techniques;

—k-anonymity for trajectories, which ensures that each individual trajectory
can only be released if there are at least k1 distinct individuals whose associ-
ated trajectories are indistinguishable from the former (see (Gedik and Liu,
2008) for more detailed information).

(6) Mobility/communication interplay. The interplay between telecommuni-
cations and physical location is still a challenge. In some cases it has been
suggested that telecommunications may be a substitute for physical interac-
tion (Albertson, 1977). In other cases conflicting hypotheses have been made,
including those of a complementary (Mok et al., 2010), neutral (Choo et al.,
2010) or reinforcing (Sasakia and Nishiib, 2010) effect. Regarding mobile phone
network data, the work in (Calabrese et al., 2011) investigates the relationship
between people’s calls and their physical location. In (Wang et al., 2011) the
authors mine the similarities between people’s movements (as collected by the
mobile phone network) and social networks.

(7) Real Time data acquisition and processing. Many urban sensing applica-
tions (e.g., traffic monitoring, event management, etc.) are useful if results are
presented in real time or near-real time. The problem is that usually mobile
phone network data is first acquired and then pushed to databases, thus it is
not usually available in real time (see Section 3). Since the quantity of mobile
phone network data produced everyday is massive, there is the need of ad-hoc
algorithms and platforms to process such data in real time. Proposed solutions
are streaming platforms able to deal with different types of data in real time
(see for example (Gasparini et al., 2011; Kaiser and Pozdnoukhov, 2011)).

6. CONCLUSIONS

This article discusses the current state of the art and open challenges in the emerging
field of mobile phone network data for urban sensing. The primary obstacle to this
new field is not a lack of infrastructure: millions of people already carry phones and
telecoms operators already have the needed infrastructure. Rather, the technical
barriers are related to performing privacy-sensitive reasoning with noisy and sparse
data. Research is still particularly needed in: (i) inferring behavioral patterns;
(ii) building analytics and systems to process massive datasets and automatically
extract patterns; (iii) building control systems able to make use of inferred patterns
to optimize city services. Mobile phone network data will ultimately provide both
micro- and macroscopic views of cities and help understand citizens’ behaviors and
patterns.
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