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CHAPTER 6

ECOLOGICAL FOOTPRINT
ANALYSIS:ASSESSING URBAN

SUSTAINABILITY

William E. Rees

Half the human family already lives in cities and the United Nations projects that
urban populations will increase by an additional 2.9 billion in the next four decades.1

This increase alone is equivalent to the total accumulation of people on Earth in the
entire history of Homo sapiens up until 1957! This greatest of all human migrations
underscores the fact that there can be no global sustainability without urban
sustainability.

The purpose of this chapter, therefore, is to suggest a framework to examine prospects for
urban sustainability. In particular, the author explores ecological footprint analysis
as an essential tool for assessing the sustainability of cities. His main focus is
unapologetically on the biophysical dimensions of urban futures for two reasons. First,
until relatively recently, most urban scholarship dealt with cities solely as cultural,
social, economic or engineered environments. The fact that cities are also complex
biophysical systems subject to natural laws has been all but ignored. Second, despite this
scholarly vacuum, biophysical sustainability is essential for, and arguably prerequisite
to, social, cultural and economic sustainability. It is possible to envisage fully functional
ecosystems without cities but there can be no cities in the absence of functional ecosystems2

Biophysical sustainability: not that difficult a concept

Despite the endless debate on the definition and meaning of sustainability, on
one level the concept is quite simple. Something (e.g. an individual, a city, an
ecosystem, the entire human enterprise) is sustainable if it can continue to
function in its present state and existing configuration indefinitely.



From this perspective, the human enterprise, as presently configured, is
clearly unsustainable. Agriculture depletes arable lands 10–30 times faster
than soils regenerate; fishers are overharvesting 75 per cent of the world’s fish
stocks; the oceans are acidifying; agricultural and urban run-off have created
large ocean dead-zones that are expanding in number and area; climate change
is upon us and greenhouse gases continue to accumulate – the list goes on.
What all such data indicate is that the growth of the human economy is
currently being funded, in part, through the liquidation of so-called ‘natural
capital’, the self-producing, replenishable and non-renewable natural
resources that constitute the material basis of human existence.

Because of the sheer volume of the original endowment of natural capital,
humanity can remain in an unsustainable state of overshoot for a considerable
period of time. But there are limits. Humans are depleting in decades various
natural capital stocks, ranging from tropical forest to petroleum, which
required thousands or millions of years to accumulate in the ecosphere. Since
reliable supplies of natural capital are pre-requisite to the growth and
maintenance of the human enterprise, it is clear that the latter cannot continue
‘to function in its present state and configuration indefinitely’. Ominously,
while the biophysical and material basis of civilisation is in decline, both the
human population and per capita material demands are increasing.

Let’s be clear. From the biophysical perspective the proximate driver of
unsustainability is energy and material consumption. Of course, some
consumption is necessary. As biological entities, all people are ‘obligate
consumers’ – a minimal amount of material throughput is necessary merely
to maintain any complex system. The problem is that we have ‘socially
constructed’ a global, capitalist, economic system that assumes continuous
manufactured capital accumulation and is therefore dependent on continuous
material growth. The resultant resource scarcity (depletion) and pollution are
therefore merely the symptoms of a greater malaise – gross human ecological
dysfunction exercised through the economic process. Material demands
stemming from the sheer scale of the human enterprise threaten permanently
to undermine the functional integrity of the ecosphere. This is the context
from which we must consider prospects for urban sustainability.

Cities as dissipative structures

Both cities and the economic process are subject to natural laws, the most
critical of which is the second law of thermodynamics. The second law states
that any process occurring in an isolated system (one unable to import energy
or matter from its environment) increases the entropy of that system. By this
we mean that each successive change in an isolated system depletes its
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resources, reduces internal gradients, simplifies its structure and otherwise
increases the ‘randomness’ of that system. In effect, isolated systems
cannibalise themselves – they slide inexorably toward a homogenous state of
thermodynamic equilibrium, a state of maximum entropy in which nothing
further can happen.

By contrast, complex living systems, from individual body cells to entire
cities, are self-organising open systems that maintain themselves and thrive in
a far-from-(thermodynamic)-equilibrium, dynamic, steady-state. Living
systems are able to ‘defend’ themselves against the second law by importing
available energy and matter from their environments and using these
resources to reproduce themselves and grow. Moreover, systems ecologists
now recognise that all living systems exist in overlapping nested hierarchies
in which each component subsystem (‘holon’) is contained by the next level
up and itself comprises a chain of linked subsystems at lower levels
(think ‘Russian nesting dolls’). This organisational form is the basis for
‘SOHO’ (self-organising holarchic open) systems theory.3 Every sub-system
(or holon) in the hierarchy grows and develops by extracting usable energy
and material (negentropy) from its host ‘environment’ one level up and
by ejecting its wastes back into its host. In short, living entities maintain
their local organisation at the expense of increased global entropy, particularly
the entropy of their immediate host system.4 Because all self-organising
systems maintain themselves far-from-equilibrium by continuously degrad-
ing and dissipating available energy and matter, they are called ‘dissipative
structures’.5

SOHO theory has critical implications for urban sustainability. Both cities
and ecosystems are self-organising far-from-equilibrium dissipative struc-
tures. However, while the ecosphere evolves and maintains itself by ‘feeding’
on an extra-terrestrial source of energy (the sun) and by continuously
recycling matter, cities grow and maintain themselves by feeding on the rest
of the ecosphere and ejecting their wastes back into it. In short, cities (indeed,
the entire human enterprise) are open, growing, dependent sub-systems of the
materially closed, non-growing finite ecosphere – they can grow and increase
their internal order (negentropy) only by ‘disordering’ the ecosphere and
increasing global entropy.

This relationship is not necessarily problematic. Ecosystems self-produce
and maintain themselves far-from-equilibrium indefinitely empowered by
solar energy. They constantly recycle critical nutrients and dissipate their
entropic waste heat back into space. Production marginally exceeds
respiration and consumption in the non-humanised ecosphere, so biomass
slowly accumulates. Indeed, throughout the whole of evolutionary history, net
primary production by producer species (mostly green plants) has been more
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than adequate to sustain the world’s entire complement of consumer
organisms, including pre-industrial humans, and to evolve new species.

The sustainability conundrum has emerged largely because of the sheer
scale of the human enterprise. Our increasingly urban global culture is
thermodynamically positioned to consume the ecosphere from within and the
accelerating pace of global ecological change suggests that humanity has, in
fact, grown to become maliciously parasitic on its planetary host.6 Certainly
the burgeoning human demand for self-producing resources already exceeds
annual production and natural waste sinks are filled to over-flowing (e.g.
eutrophication of fresh waters, greenhouse gas accumulation).1

Quantifying sustainability using ecological footprint analysis

If humanity is serious about sustainability, the world community must begin
to scale its material demands to the supply of productive biocapacity.
Ecological footprint analysis (EFA) provides a well-developed tool to approach
this issue.7 EFA provides a partial answer to what should be the first question
of human ecology (or ecological economics): ‘How much of the earth’s
productive biocapacity is required to support any specified human population
at a defined material standard of living with prevailing technology.’

EFA acknowledges that whether we acknowledge it or not, modern human
beings are integral components of the ecosystems that support them and that
they are therefore still very much dependent on ‘the land’. The method also
recognises: (a) that whether we consume locally produced products or trade
goods, the land connection remains intact, however far removed from the
point of consumption some of the productive ecosystems may lie; and (b) that
no matter how sophisticated our technology, the production/consumption
process requires some land-and water-based ecosystems services. Ecofootprint
analysis thus incorporates trade and technology factors simply by inverting
the standard carrying capacity ratio: rather than asking what population can
be supported by a given area, ecofootprinting estimates how much productive
area is needed to support a given population, regardless of the location of the
land or the state of technology.

As implied above, EFA is based on two critical premises: most human impacts
on ecosystems are associated with energy and material extraction/consumption
and many energy and material flows can be converted to corresponding
productive or assimilative ecosystems areas. A typical ecofootprinting study
therefore begins by quantifying all the material and energy associated with final
consumption by the study population. Analysts then convert these data to the
corresponding ecosystem areas required to produce the goods/services and
assimilate critical wastes (usually carbon dioxide). Summed up, this total
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ecosystem area represents the biocapacity effectively ‘appropriated’ by the study
population to support itself. We therefore formally define the ecological
footprint of a specified population as: the area of productive land and water
ecosystems that the population requires, on a continuous basis, to produce the
resources it consumes and to assimilate its carbon wastes, wherever on earth the
relevant land/water may be located.

A complete ecofootprint analysis therefore includes the population’s
demand on domestic ecosystems, plus any area it effectively ‘imports’ through
net commodity trade, plus its demands on the global common pool for free
land- and water-based services (e.g. fish stocks and the carbon-sink function).
The area of a population’s eco-footprint depends on four factors: the size of the
population, the people’s average material standard of living, the productivity
of the land/water base, and the technological efficiency of resource harvesting,
processing and use. Regardless of how these factors interact, a population’s
ecofootprint represents much of that population’s demand on global
biocapacity, including ecosystems located half a planet away.

It is important to acknowledge that ecofootprints represent ecologically
exclusive areas. The productive capacity used by one human population is not
available for use by another. Since there is a measurable, finite area of
productive land and water ecosystems on Earth, all human populations are in
competition for the available biocapacity of the planet.

We obtain production, productivity and trade data for ecofootprint
estimates from national statistical agencies and such international data sources
as the Food and Agriculture Organization’s Corporate Statistical Database
(FAOSTAT). To facilitate comparisons among populations and countries, the
results of population EFAs are usually normalised and published in terms of
global hectares (hectares of global average productivity or gha). For fuller
details of the method see WWF8 and the Global Footprint Network on-line
by following the links at http://www.footprintnetwork.org.

Urban biophysical reality

To some analysts, accelerating urbanisation implies that people are becoming
less connected to the land. For example, many economists believe that,
because of a declining GDP to resource use ratio, the economy is decoupling
from ‘the environment’, that the human enterprise is dematerialising.

These beliefs are illusion. As consumer organisms, not only do humans
remain an integral part of the ecosystems that sustain them but, because of
higher incomes and purchasing power, urbanites make significantly greater
demands on the ecosphere than do typical rural dwellers, particularly
impoverished peasants. In other words, despite being spatially separated from
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‘the land’, urbanites’ functional relationship to ecosystems remains intact (albeit
extended and corrupted). City dwellers necessarily continue to satisfy their bio-
metabolisms by consuming the products of natural and managed ecosystems
and by disposing of their wastes back into surrounding ecosystems.

There is a further consideration. In addition to their human bio-metabolism,
cities have an enormous ‘industrial metabolism’ based largely on the use of fossil
fuels. The construction, operation, and maintenance of buildings and urban
infrastructure account for 40 per cent of the materials used by the world
economy;9 in the US, almost 39 per cent of total energy consumption and
38 per cent of carbon dioxide (CO2) emissions can be traced to buildings.10

Indeed, Levin et al. and Levin (1997)11 show that buildings in the US account
for between 15 per cent and 45 per cent of the total environmental burden in
each of eight major categories of impact used for life-cycle assessment. Much of
the remaining 55–85 per cent of urban consumption can be attributed to
urbanites’ personal consumption.

The migration of people to cities has major eco-functional consequences.
Global urbanisation has converted local, vertically integrated, nutrient-
recycling human ecosystems into global, horizontally disintegrated, self-
consuming unidirectional throughput systems. For example, instead of being
re-deposited on farmland, Vancouver’s daily appropriations of mineral
nutrients in food from as far away as Saskatchewan, Ecuador and Thailand are
flushed straight out to sea. Ecological result? Arable lands are being depleted,
critical nutrients dissipated and the oceans over-fertilised.

Urbanites like to think of their cities as cultural incubators, centres of
intense economic activities and producers of wealth. All true, but the forgoing
data emphasise that, in strictly biophysical terms, cities are also massive
‘dissipative structures’. All cities great and small are necessarily nodes of
intense energy/material consumption and waste production; they are also
dependent subsystems of the planetary SOHO hierarchy. Cities’ ever-
increasing scale and complexity (distance from equilibrium) therefore
inevitably imposes an ever-greater entropic load on the ecosphere.

The ecological footprints of cities

Production is a prerequisite for consumption and production must take
place somewhere. For every urbanised consuming ‘node’ there is a
corresponding – but vastly larger and increasingly global – network of
ecosystems that generates bio-resources (negentropy) and life-support
functions essential for the survival and sustainability of the city.

This is where ecological footprint analysis comes in – we can use it to
estimate the area of any city’s productive hinterland. Recent EF studies reveal
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that the average residents of high-income, mainly urban countries such as the
United Arab Emirates, the United States, Canada, Australia, Western Europe,
and Japan each require the biophysical output of 4 to 10 global average
hectares (10–25 average acres) per capita of productive land and water to
support their consumer lifestyles. Wealthy urban elites throughout the
developed world therefore boast oversized ecofootprints. Note, for contrast,
that the citizens of the poorest, mostly rural, nations get by on the
productivity and sink capacities of as little as half a gha.12

Some of the world’s great cities have population densities of several tens
to hundreds of people per hectare. However, EFA shows that each city
dweller is functionally ‘attached’ by trade, commerce and waste flows
(economic production and consumption) to several hectares of productive
land and water scattered around the world. We should therefore not be
surprised to learn that the EFs of high-income cities typically exceed
their geographic or political areas by two to three orders of magnitude.13

For example:

. With a per capita EF of approximately 7.0 gha (based on the Canadian
national average), the 600,000 citizens of the author’s home town,
Vancouver, effectively occupy an ecosystem area 368 times larger than the
city’s 114 km2 (11,400 ha). Even the metropolitan population of
2.2 million, living at lower average densities, has an extraterritorial
eco-footprint 55 times larger than the metropolitan region’s 2,787 km2

(Rees 2010,14 but see also note 5).
. Folke et al.15 estimated that the 29 largest cities of Europe’s Baltic region

require the biocapacity of forest, agricultural, marine, and wetland
ecosystems 565–1,130 times larger than the area of the cities themselves;

. Warren-Rhodes and Koenig16 estimated that the almost 7 million people
of Hong Kong (EF ¼ 5.0-7.2 gha/capita) have a total eco-footprint of
332,150 to 478,300 km2. Thus, the residents of Hong Kong ecologically
‘occupy’ a space on the planet at least 3,020 times the built-up area of the
city (110 km2) or about 303 times the total land area of the Hong Kong
Special Administrative Region (1,097 km2).

. At 6.6 gha/capita, London’s ecological footprint in 2000 was almost 49
million global hectares (gha) – 42 times its biocapacity and 293 times its
geographical area.17 If cut off from global supply chains, the UK could
not support even its capital city on the country’s domestic biocapacity.

. Similarly, assuming the Japanese average per capita EF of 4.7gha,
metropolitan Tokyo, the world’s largest city (population: 33 million) has
a total eco-footprint of 155,100,000 gha. Since the entire domestic
biocapacity of Japan is only about 89,000,000 gha,18 Tokyo, with only

SUSTAINABLE CITIES108



26% of Japan’s population, lives on an area of productive ecosystems
1.7 times larger than that nation’s terrestrial biocapacity!19

The Global Rural Urban Mapping Project reported in 2005 that ‘roughly
3% of the Earth’s land surface is occupied by urban areas’ and that this
represents an increase of ‘at least 50% over previous estimates that urban areas
occupied 1–2% of the Earth’s total land area’20. As impressive as this
apparent increase may seem, the foregoing shows that it is ecologically
meaningless. Three per cent represents only the area of Earth ‘occupied’ by
urbanised land, what planners call the ‘built environment’. By contrast, EFA
confirms that 100 per cent of the bioproductive land and water area on Earth
has been functionally ‘occupied’ in support of human, mainly urban
populations. Indeed, global biocapacity is being severely overused. There are
only 1.8 gha of ecologically productive land and water per capita on the planet,
yet the average human ecofootprint is 2.7 gha. The human enterprise has
exceeded the long-term carrying capacity of Earth by 50 per cent. We are in
overshoot, currently using an entire years’ worth of bioproduction in about
eight months.21

(Re)assessing urban sustainability

EFA results suggest several properties of cities that should be central to urban
sustainability assessment and planning. First, in biophysical and thermo-
dynamic terms, contemporary cities are entropic black holes sweeping up the
productivity of a vastly larger and increasingly global resource hinterland and
(necessarily) spewing an equivalent quantity of waste back into it.22 From this
perspective, cities have become as much the engines of global entropic decay
as they are the ‘engines of national economic growth’.

Second, cities per se are incomplete human ecosystems. As previously
noted, what most people think of as ‘the city’ is merely the resource-
consuming and waste-generating core of the total human urban ecosystem.
The latter also comprises a productive/assimilative hinterland that may be
several hundred times larger than the core and is increasingly dispersed all
over the earth. (In this singular respect, cities are ecologically analogous to
livestock feedlots – both are intense concentrations of a single macro-
consumer species spatially segregated from their supportive ecosystems.)
The critical point is that both the built-up core and the more extensive
supportive countryside are essential components of the complete urban-
centred human ecosystem. It is virtually meaningless to plan for urban
sustainability without ‘hinterland sustainability’.23
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Third, no individual city, region or country within the global SOHO
hierarchy can be sustainable if its host system(s) higher in the hierarchy are
decaying unsustainably. Vancouver or Tokyo – any modern city – could
become an exemplar of local sustainability planning in conventional terms
but this would be to no avail if its supportive ecosystems fail due to climate
change or other form of eco-degradation (or, for that matter, if the city is
simply cut off from its sources of supply).

Fourth, it follows that virtually all modern cities are currently
unsustainable. Cities are subsystems of the human enterprise and, as
previously established, the entire human enterprise is in an unsustainable
state of overshoot. In the event of increasingly probable large-scale climate
change, significant food or other resource shortages, and any resultant
geopolitical turmoil, even wealthy cities are at risk – the first class suites on
the Titanic sank just as quickly as the third class steerage cabins.

Fifth, from the perspective of EFA, most contemporary efforts toward
urban sustainability or ‘greening’ the city may increase urban ‘livability’, but
they are too narrowly focused to be effective in achieving sustainability. The
new urbanism, smart growth, green buildings, living roofs, hybrid vehicles,
improved public transit and similar approaches to more efficient urban design
make only marginal contributions to reducing cities’ ecological footprints.
The science is clear – if your development project or urban sustainability plan
does not produce a substantial reduction in per capita energy and material
throughput (up to 80 per cent in North American and other high-income
cities) it is part of the problem.

Toward resolution

None of this means that human urban culture cannot, in theory, become
sustainable. However, true sustainability requires that policy analysts and
planners both think in ‘whole systems’ terms and consider the global context.
In fact, it should be apparent that in today’s interdependent world,
sustainability is a collective problem requiring unprecedented international
cooperation and globally coordinated solutions.

Regrettably, it does not seem likely that these policy conditions will be
met in the foreseeable future. Individual cities can, in theory, go it alone, but
in the absence of global sustainability planning, the best any city can achieve
in isolation is a state of quasi-sustainability. A city would be ‘quasi-
sustainable’ if its residents were living at a level of energy/material
consumption per capita which, if extended to the entire human family, would
result in global sustainability (Rees 2009).24 This assumes general equity as a
moral prerequisite and starting point for sustainability planning as there is no
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prima facie reason why some people merit a greater share of the world’s
ecological output than others.

As noted, there are presently only about 1.8 gha of productive land and
water ecosystems per capita on Earth.25 This 1.8 gha represents each person’s
equitable share of global biocapacity. Equitable global sustainability
therefore implies that the eco-footprints of rich and poor alike should
converge on 1.8 gha. If the basic science is correct, failure to achieve an
average human ecofootprint within global biocapacity implies the collapse
of major ecosystems and life-support functions and, with them, prospects
for global civilisation. Equitable sustainability on a finite planet requires
large reductions in the material demands of rich consumers simply to
create the ecological space required for justifiable growth in developing
countries.26

The quasi-sustainable or ‘one planet’ criterion obviously has enormous
implications for urban sustainability planning. Using Vancouver as an
example, ‘Vancouverites’ would have to take steps to reduce their average
ecofootprints by 74 per cent (from 7.0 to 1.8 gha per capita) to meet the one
planet standard under prevailing conditions.27 This is fairly typical for high-
income cities. On the assumption that available biocapacity will decline to
only 1.4 gha, by mid-century, the Greater London Authority reported that
Londoners will have to reduce their ecofootprints by 80 per cent to become
(quasi)sustainable by 2050.28

Material contraction by the rich may be necessary, but there is a
problem. In today’s competitively individualistic growth-oriented global
economy, policies to encourage significant reductions in material
throughput (e.g. significant carbon taxes or other approaches to true-cost
pricing) remain politically unfeasible. Certainly there is little evidence that
any wealthy city or country is yet prepared to implement measures to
achieve a state of quasi-sustainability. One major barrier to needed action is
the so-called public good/free-rider problem. According to conventional
wisdom, any city working toward quasi-sustainability (a ‘public good’)
on its own would lose out in today’s economy and would eventually
succumb to global collapse anyway if other cities (the ‘free-riders’) did not
follow. This conundrum is regrettable since an 80 per cent reduction
of high-income ecofootprints seems achievable with no loss of living
standards using existing technologies and anticipated increases in resource
productivity.29

Political inaction by individual states while solutions are at hand underscores
the fact that sustainability is a collective problem requiring collective solutions
(and helps to explain why a policy paralysed global community is collectively
tempting climate chaos and geopolitical turmoil).
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Epilogue

Approximately 70 per cent of global energy and material throughput can be
attributed to consumption and waste production in support of urban
populations, particularly the populations of high-income cities. The
production of anything – an email message, your cell phone, an ocean
liner, our own bodies – requires the extraction and dissipation of useful
energy and material and the ejection of useless waste. These are irreversible
processes. The energy consumed is almost immediately permanently radiated
off the planet and, while the material may remain in the system, it is often
chemically transformed and widely dispersed into the air soils and water.
Recapturing such dissipated material is economically impossible. The
excessive scale of human economic activity is literally consuming and
dissipating the biophysical basis of our own existence.

The ‘hard science’ of sustainability is well-developed. There is no serious
dispute about any assertion in the previous paragraph, for example. Countless
scientific studies have helped to scale the problem; climate change analyses,
ecofootprinting and related studies agree on the reductions in material
throughput needed to create a sustainable steady-state. Yet there is no
evidence of the political or popular will necessary for policies that will
actually make a difference. Instead, society deludes itself into thinking that
minor reform is all that is necessary, that improved efficiency or new
technologies can preserve the status quo. Indeed, those with vested interests in
the status quo are spending vast sums on disinformation campaigns to ensure
the public remains deluded! We now have an economic sector dedicated to the
social construction of denial.

It does not help that urbanites are both spatially and psychologically
isolated from the ecosystems that support them and thus doubly blind to the
distant land degradation, pollution and social costs incurred to serve their
demands. Globalisation and trade further delay signals of imminent danger
by providing urban consumers access to remaining pockets of productive
natural capital all over the earth. Thus while wealthy urbanites experience a
world of glittering lights, techno-gadgetry and expanding economies their
consumer lifestyles are creating a parallel world of, degraded landscapes,
climate change and depleted resources.

Humans claim to be intelligent, uniquely capable of logical analysis and
forward planning, and able to exercise moral judgment. These are precisely
the qualities necessary to ensure a smooth transition from contemporary
overshoot to an ecologically stable, economically secure and socially more
equitable world. Yet the mainstream world seems focused almost exclusively
on policies to fuel the growth economy and the root of the sustainability
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crisis. It is no small irony that when those qualities that make us truly human
are most in demand, they seem to be in least supply.
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